
Installing lcc

Christopher W. Fraser
AT&T Bell Laboratories Rm. 2C−464, 600 Mountain Ave., P.O. Box 636, Murray Hill, NJ
07974−0636

David R. Hanson
Department of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 08544

Contents

1. Introduction 
2. Paths 
3. Installing the Driver 
4. Installing the Compiler Proper 
5. Reporting Bugs 
6. Keeping in Touch 

1. Introduction

lcc is the ANSI C compiler described in our book A Retargetable C Compiler: Design and
Implementation (Benjamin Cummings, 1995, ISBN 0−8053−1670−1).

Extract the distribution into its own directory. All paths below are relative to this directory. The
distribution holds the following subdirectories. 

src 
source code 

etc 
driver, man page 

doc 
this document 

include 
ANSI include files 

tst 
test suite 

mips−* mips−*/tst 
MIPS build area, test output 

sparc−* sparc−*/tst
SPARC build area directory, test output 

x86−dos x86−dos/tst
x86 build area, test output 

Distributions include code generators for the MIPS, SPARC, and the Intel 386 and its successors.

Installation involves three steps performed in the following order.

1. Decide where to install the man page, the include files, the compiler, and lcc, the driver
program; see Sec. 2.

2. Install a host−specific driver; see Sec. 3.

3. Install the compiler; see Sec. 4.

The value of the variable rcsid in src/main.c identifies the version of the distribution. If the
file LOG appears, it describes the changes from the previous version.



doc/install.html is the HTML file for this document. doc/install.ps and 
doc/install.txt are PostScript and plain ASCII versions.

2. Paths

Installation consists of three files and one directory; these are summarized below along with paths
used in typical installations. 

/usr/local/man/man1/lcc.1 
the man page 

/usr/local/lib/rcc 
the compiler 

/usr/local/bin/lcc 
the driver 

/usr/local/include/ansi 
include files (a directory) 

These files can be placed in other, site−specific locations, but the compiler should be named rcc.
If the driver isn’t named lcc, edit the man page (etc/lcc.1).

Include files are in directories named include/target−system; the meaningful combinations are 

mips−irix 
IRIX Release 4.0 

mips−ultrix 
ULTRIX 4.3 

sparc−sun 
SunOS 4.1 

sparc−solaris 
Solaris 2.3 

x86−dos 
DOS 6.0, Windows 3.1 

Choose the include files that are appropriate for your system, or make a copy of a closely related
set and edit them.

For example, if the paths shown above are chosen and if include/mips−ultrix has the
appropriate include files, install the man page and include files by 

% cp etc/lcc.1 /usr/local/man/man1
% cp include/mips−ultrix/*.h /usr/local/include/ansi

3. Installing the Driver

The preprocessor, compiler, assembler, and loader are invoked by a driver program, lcc, which is
similar to cc on most systems. It’s described in the man page etc/lcc.1. The driver is built by
combining the host−independent part, etc/lcc.c, with a small host−specific part. By
convention, host−specific parts are named hostname.c, where hostname is the local name for
the host on which lcc is being installed. etc holds many examples. Comments in most give the
details of the particular host; pick one that is closely related to your host, copy it to etc/
yourhostname.c, and edit it as described below. You should not have to edit etc/lcc.c.

Debug your version of the driver by running it with the −v −v options, which cause it to echo the
commands it would execute, but not to execute them.

Here’s etc/hart.c, which we’ll use as an example in describing how to edit a host−specific
part. This example illustrates all of the important features. 

/* DECStations running ULTRIX at Princeton University */



#include <string.h>

char *cpp[] = {
        "/usr/gnu/lib/gcc−cpp", "−undef",
        "−DLANGUAGE_C", "−D_LANGUAGE_C", "−D__LANGUAGE_C",
        "−D_unix", "−D__unix", "−Dultrix", "−D_ultrix", "−D__ultrix",
        "−Dmips", "−D_mips", "−D__mips",
        "−Dhost_mips", "−D_host_mips", "−D__host_mips",
        "−DMIPSEL", "−D_MIPSEL", "−D__MIPSEL",
        "$1", "$2", "$3", 0 };
char *include[] = { "−I/usr/local/include/ansi", 0 };
char *com[] =  { "/usr/local/lib/rcc", "−target=mips−ultrix",
        "$1", "$2", "$3", 0 };
char *as[] =  { "/bin/as", "−o", "$3", "", "$1",
        "−nocpp", "−EL", "$2", 0 };
char *ld[] =  { "/usr/bin/ld", "−o", "$3", "/usr/lib/crt0.o",
        "$1", "$2", "", "", "−lm", "−lc", 0 };

int option(arg) char *arg; {
        if (strcmp(arg, "−g") == 0)
                as[3] = "−g";
        else if (strcmp(arg, "−p") == 0
        && strcmp(ld[3], "/usr/lib/crt0.o") == 0) {
                ld[3] = "/usr/lib/mcrt0.o";
                ld[7] = "/usr/lib/libprof1.a";
        } else if (strcmp(arg, "−b") == 0
        && access("/usr/local/lib/bbexit.o", 4) == 0)
                ld[6] = "/usr/local/lib/bbexit.o";
        else
                return 0;
        return 1;
}

Most of the host−specific code is data that gives prototypes for the commands that invoke the
preprocessor, compiler, assembler, and loader. Each command prototype is an array of pointers
to strings terminated with a null pointer; the first string is the full path name of the command and
the others are the arguments or argument placeholders, which are described below.

The cpp array gives the command for running the preprocessor. lcc is intended to be used with
an ANSI preprocessor, such as the GNU C preprocessor available from the Free Software
Foundation. If the GNU preprocessor is used, it must be named gcc−cpp in order for lcc’s −N
option to work correctly.

Literal arguments specified in prototypes, e.g., "−Dmips" in the cpp command above, are
passed to the command as given.

The strings "$1", "$2", and "$3" in prototypes are placeholders for lists of arguments that are
substituted in a copy of the prototype before the command is executed. $1 is replaced by the 
options specified by the user; for the preprocessor, this list always contains at least −Dunix and 
−D__LCC__. $2 is replaced by the input files, and $3 is replaced by the output file.

Zero−length arguments after replacement are removed from the argument list before the
command is invoked. So, e.g., if the preprocessor is invoked without an output file, "$3"
becomes "", which is removed from the final argument list.

For example, to specify a preprocessor command prototype to invoke /bin/cpp with the options
−Dmips and −Dultrix, the cpp array would be 

char *cpp[] = { "/bin/cpp", "−Dmips", "−Dultrix",
        "$1", "$2", "$3", 0 };

The include array is a list of −I options that specify which directives should be searched to
satisfy include directives. These directories are searched in the order given. The first directory
should be the one to which the ANSI header files were copied in Sec. 2. The driver adds these
options to cpp’s arguments when it invokes the preprocessor, except when −N is specified.



Design this list carefully. Mixing ANSI and pre−ANSI headers (e.g., by listing /usr/include
after the directory of ANSI headers shown above) may mix incompatible headers. Unless the
default list holds only /usr/include or only the ANSI headers, many users may be forced to
use −N and −I incessantly.

com gives the command for invoking the compiler. This prototype can appear as shown above,
with two important changes. The command name should be edited to reflect the location of the
compiler chosen in Sec. 2, and the option −target=mips−ultrix should be edited to the 
target−system for your host. lcc can generate code for all of the target−system combinations
listed in Sec. 2. The −target option specifies the default combination. The driver’s −Wf option
can be used to specify other combinations; the man page elaborates.

as gives the command for invoking the assembler.

ld gives the command for invoking the loader. For the other commands, the list $2 contains a
single file; for ld, $2 contains all ‘.o’ files and libraries, and $3 is a.out, unless the −o option is
specified. As suggested in the code above, ld must also specify the appropriate startup code
and default libraries.

The option function is described below; for now, use an existing option function or one that
returns 0.

After specifying the prototypes, compile the driver by 

% cd etc
% make HOST=hart

where hart is replaced by yourhostname. Run the resulting a.out with the options −v −v to
display the commands that would be executed, e.g., 

% a.out −v −v foo.c baz.c mylib.a −lX11
a.out $Revision: 3.1 $ $Date: 1994/09/07 11:37:52 $
foo.c:
/usr/gnu/lib/gcc−cpp −undef −DLANGUAGE_C −D_LANGUAGE_C −D__LANGUAGE_C
   −D_unix −D__unix −Dultrix −D_ultrix −D__ultrix −Dmips −D_mips
   −D__mips −Dhost_mips −D_host_mips −D__host_mips −DMIPSEL −D_MIPSEL
   −D__MIPSEL −Dunix −D__LCC__ −v −I/usr/local/include/ansi foo.c
   | /usr/local/lib/rcc −target=mips−ultrix −v − /tmp/lcc12511.s
/bin/as −o foo.o −nocpp −EL /tmp/lcc12511.s
baz.c:
/usr/gnu/lib/gcc−cpp −undef −DLANGUAGE_C −D_LANGUAGE_C −D__LANGUAGE_C
   −D_unix −D__unix −Dultrix −D_ultrix −D__ultrix −Dmips −D_mips
   −D__mips −Dhost_mips −D_host_mips −D__host_mips −DMIPSEL −D_MIPSEL
   −D__MIPSEL −Dunix −D__LCC__ −v −I/usr/local/include/ansi baz.c
   | /usr/local/lib/rcc −target=mips−ultrix −v − /tmp/lcc12511.s
/bin/as −o baz.o −nocpp −EL /tmp/lcc12511.s
/usr/bin/ld −o a.out /usr/lib/crt0.o foo.o baz.o mylib.a −lX11 −lm −lc
rm /tmp/lcc12511.s

Leading spaces indicate lines that have been folded manually to fit this page. Note the use of a
pipeline to connect the preprocessor and compiler. lcc arranges this pipeline itself; it does not
call the shell. If you want lcc to use temporary files instead of a pipeline, define PIPE=0 in 
CFLAGS when making the driver: 

% make CFLAGS=’−DPIPE=0’ HOST=hart

The option −pipe forces lcc to use a pipeline between the preprocessor and the compiler
regardless of PIPE’s value.

As the output shows, lcc places temporary files in /tmp. Alternatives can be specified by
defining TEMPDIR in CFLAGS when making the driver, e.g., 



% make CFLAGS=’−DTEMPDIR=\"/usr/tmp\"’ HOST=hart

causes lcc to place temporary files in /usr/tmp. Once the driver is completed, install it by 

% cp a.out /usr/local/bin/lcc

where the destination is the location chosen for lcc in Sec. 2.

The option function is called for the options −g, −p, −pg, and −b because these compiler
options might also affect the loader’s arguments. For these options, the driver calls 
option(arg) to give the host−specific code an opportunity to edit the ld command, if
necessary. option can change ld, if necessary, and return 1 to announce its acceptance of the
option. If the option is unsupported, option should return 0.

For example, in response to −g, the option function shown above changes as[3] from "" to 
"−g", which specifies the debugging option to the assembler. If −g is not specified, the ""
argument is omitted from the as command because it’s empty.

Likewise, the −p causes option to change the name of the startup code and add the name of
the profiling library. Note that option has been written to support simultaneous use of −g and 
−p, e.g., 

% a.out −v −v −g −p foo.s baz.o −o myfoo
a.out $Revision: 3.1 $ $Date: 1994/09/07 11:37:52 $
/bin/as −o foo.o −g −nocpp −EL foo.s
/usr/bin/ld −o myfoo /usr/lib/mcrt0.o foo.o baz.o
   /usr/lib/libprof1.a −lm −lc
rm /tmp/lcc12516.s

On Suns, the driver also recognizes −Bstatic and −Bdynamic as linker options, and
recognizes but ignores Sun’s ‘−target name’ option.

The option −Woarg causes the driver to pass arg to option. Such options have no other effect;
this mechanism is provided to support system−specific options that affect the commands
executed by the driver.

The −b option causes the compiler to generate code to count the number of times each
expression is executed. The exit function in etc/bbexit.c writes these counts to prof.out
when the program terminates. If option is called with −b, it must edit the ld command
accordingly, as shown above. This version of option uses the access system call to insure that
bbexit.o is installed before editing the ld command. To install bbexit.o execute 

% make bbexit.o
% cp bbexit.o /usr/local/lib/bbexit.o

If necessary, change /usr/local/lib to reflect local conventions. The exit function in 
etc/bbexit.c works on the systems listed in Sec. 2, but may need to be modified for other
systems.

If option supports −b, you should also install etc/bprint.c, which reads prof.out and
generates a listing annotated with execution counts. After lcc is installed, install bprint with the
commands 

% make bprint
% cp bprint /usr/local/bin/bprint
% cp bprint.1 /usr/local/man/man1

The makefile uses lcc to compile bprint.c; you must use lcc or another ANSI C compiler,
e.g., gcc, because bprint.c is written in ANSI C. Also, bprint.c includes 
"../src/profio.c", so it must be compiled in etc.



To complete the driver, write an appropriate option function for your system, and make and
install the driver as described above.

4. Installing the Compiler Proper

The compiler proper, rcc, is built by compiling it with the host C compiler and then using the
result to re−compile itself. A test suite is used to verify that the compiler is working correctly. The
examples below illustrate this process on a MIPS under Ultrix. You must have the driver, lcc,
installed in order to test rcc. If any of the steps below fail, contact us (see Sec. 5).

The object files, rcc, and the generated code for the programs in the test suite are placed in the
directory target−system where target and system are the names of your target machine and its
operating system, respectively. There are directories for the supported target−system
combinations, e.g., mips−ultrix.

The default target in src/makefile is rcc. lcc is built by executing make from the
apppropriate target−system directory and specifying system−specific values for CFLAGS and 
LDFLAGS, if necessary. For example, to build rcc for a MIPS running Ultrix, execute the
commands 

% cd mips−ultrix
% make −f ../src/makefile
cc −c −O ../src/alloc.c
...
cc −c −O ../src/x86.c
cc −o rcc  alloc.o bind.o dag.o ... mips.o sparc.o x86.o

There may be a few warnings, but there should be no errors. If your host is an SGI machine
running IRIX 4.0 or later, you might need CFLAGS=−cckr. If cc doesn’t automatically search the
directory that holds the source file, specify CFLAGS=−I../src. If you use gcc, specify 
CFLAGS="−ansi −fno−builtin".

Once rcc is built with the host C compiler, run the test suite to verify that rcc is working
correctly. The commands in src/makefile run the shell script src/run on each C program in
the test suite, tst/*.c. It uses the driver, lcc, so you must have the driver installed before
testing rcc. The target−system combination is read from the variable TARGET, which is specified
when invoking make: 

% make −f ../src/makefile TARGET=mips−ultrix test
../rcc mips−ultrix 8q:
../rcc mips−ultrix array:
../rcc mips−ultrix cf:
../rcc mips−ultrix cq:
../rcc mips−ultrix cvt:
../rcc mips−ultrix fields:
../rcc mips−ultrix front:
../rcc mips−ultrix incr:
../rcc mips−ultrix init:
../rcc mips−ultrix limits:
../rcc mips−ultrix paranoia:
../rcc mips−ultrix sort:
../rcc mips−ultrix spill:
../rcc mips−ultrix stdarg:
../rcc mips−ultrix struct:
../rcc mips−ultrix switch:
../rcc mips−ultrix wf1:
../rcc mips−ultrix yacc:

For each C program in the test suite, src/run compiles the program and uses diff to
compare the generated assembly code with the expected code (the MIPS code expected for 
tst/8q.c is in mips−ultrix/tst/8q.s.bak, etc.). If there are differences, the script
executes the generated code with the input given in tst (the input for tst/8q.c is in 
tst/8q.0, etc.) and compares the output with the expected output (the expected output from 
tst/8q.c on the MIPS is in mips−ultrix/tst/8q.1.bak, etc.). The script also compares



the diagnostics from the compiler with the expected diagnostics.

On some systems, there may be a few differences between the generated code and the
expected code. These differences occur because the expected code is generated by cross
compilation on a MIPS and the least−significant bits of some floating−point constants differ from
those bits in constants generated on your system. There should be no differences in the output
from executing the test programs.

The ../rcc and mips−ultrix preceding the name of each test program in the output above
indicate the compiler and the target, e.g., ‘../rcc is generating code for a mips running the 
ultrix operating system.’

Next, build rcc again using the just−built rcc: 

% make −f ../src/makefile TARGET=mips−ultrix triple
rm −f *.o
make −f ../src/makefile CC=’lcc −B./ −d0.1 −A’
   CFLAGS=’−Wf−target=mips−ultrix −I../src/../include/mips−ultrix
   −I../src’  LDFLAGS=’’
lcc −B./ −d0.1 −A −c −Wf−target=mips−ultrix
   −I../src/../include/mips−ultrix −I../src ../src/alloc.c
...
lcc −B./ −d0.1 −A −o rcc  alloc.o bind.o dag.o decl.o ... x86.o
strip rcc
od +8 od2
rm −f *.o
make −f ../src/makefile CC=’lcc −B./ −d0.1 −A’
   CFLAGS=’−Wf−target=mips−ultrix −I../src/../include/mips−ultrix
   −I../src’  LDFLAGS=’’
lcc −B./ −d0.1 −A −c −Wf−target=mips−ultrix
   −I../src/../include/mips−ultrix −I../src ../src/alloc.c
...
lcc −B./ −d0.1 −A −o rcc  alloc.o bind.o dag.o decl.o ... x86.o
strip rcc
od +8 od3
cmp od[23] && rm od[23]

This command builds rcc twice; once using the rcc built by cc and again using the rcc built by 
lcc. After building each version, an octal dump of the resulting binary is made, and the two
dumps are compared. They should be identical, as shown at the end of the output above. If they
aren’t, our compiler is generating bad code; contact us.

The final version of rcc should also pass the test suite; i.e., the output from 

make −f ../src/makefile TARGET=mips−ultrix test

should be identical to that from the previous make test.

Now install the final version of rcc: 

% cp rcc /usr/local/lib/rcc

where the destination is the location chosen for rcc in Sec. 2.

On some systems, you may be able to use environment variables and make’s −e option to avoid
specifying TARGET on each make command, and the make commands described above can be
done with a single command: 

% setenv TARGET mips−ultrix
% cd mips−ultrix
% make −e −f ../src/makefile test triple test clean

make clean cleans up, but does not remove rcc, and make clobber cleans up and removes
rcc.



The code generators for the other targets can be tested by running make from the appropriate
target−specific directory and setting some environment variables to control what src/run does.
For example, if you built mips−ultrix/rcc and installed it in /usr/local/lib/rcc, you can
test the SPARC code generator for the SunOS operating system as follows. 

% setenv REMOTEHOST noexecute
% setenv BUILDDIR /usr/local/lib/
% cd sparc−sun
% make −f ../src/makefile RCC= TARGET=sparc−sun test
/usr/local/lib/rcc sparc−sun 8q:
/usr/local/lib/rcc sparc−sun array:
/usr/local/lib/rcc sparc−sun cf:
/usr/local/lib/rcc sparc−sun cq:
/usr/local/lib/rcc sparc−sun cvt:
/usr/local/lib/rcc sparc−sun fields:
/usr/local/lib/rcc sparc−sun front:
/usr/local/lib/rcc sparc−sun incr:
/usr/local/lib/rcc sparc−sun init:
/usr/local/lib/rcc sparc−sun limits:
/usr/local/lib/rcc sparc−sun paranoia:
/usr/local/lib/rcc sparc−sun sort:
/usr/local/lib/rcc sparc−sun spill:
/usr/local/lib/rcc sparc−sun stdarg:
/usr/local/lib/rcc sparc−sun struct:
/usr/local/lib/rcc sparc−sun switch:
/usr/local/lib/rcc sparc−sun wf1:
/usr/local/lib/rcc sparc−sun yacc:

As above, src/run compares the SPARC code generated with what’s expected. There should
be no differences. Setting REMOTEHOST to noexecute suppresses the assembly and execution
of the generated code. BUILDDIR gives the directory that holds rcc, and specifying RCC= to 
make insures that rcc is not rebuilt in the sparc−sun directory.

If you set REMOTEHOST to the name of a SPARC machine to which you can rlogin, src/run
will rcp the generated code to that machine and execute it there, if necessary. See src/run for
the details.

Once everything is installed, you can use lcc as a cross compiler. The options −S and 
−Wf−target=target−system generate assembly code for the specified target, which is any of
those listed in Sec. 2. For example, 

% lcc −Wf−target=sparc−sun −S tst/8q.c

generates SPARC code for tst/8q.c in 8q.s.

lcc can also generate code for a ‘symbolic’ target. This target is used routinely in front−end
development, and its output is a printable representation of the input program, e.g., the dags
constructed by the front end are printed, and other interface functions print their arguments. You
can specify this target with the option −Wf−target=symbolic. For example, 

% lcc −Wf−target=symbolic −S tst/8q.c

generates symbolic output for tst/8q.c in 8q.s. Finally, the option −Wf−target=null
specifies the ‘null’ target for which lcc emits nothing and thus only checks the syntax and
semantics of its inputs files.

5. Reporting Bugs

lcc is a large, complex program. We find and repair errors routinely. If you think that you’ve
found a error, follow the steps below, which are adapted from the instructions in Chapter 1 of A
Retargetable C Compiler: Design and Implementation.

1. If you don’t have a source file that displays the error, create one. Most errors are exposed
when programmers try to compile a program that they think valid, so you probably have a



demonstration program already.

2. Preprocess the source file and capture the preprocessor output. Discard the original code.

3. Prune your source code until it can be pruned no more without sending the error into
hiding. We prune most error demonstrations to fewer than five lines.

4. Confirm that the source file displays the error with the distributed version of lcc. If you’ve
changed lcc, and if the error appears only in your version, then you’ll have to chase the
error yourself, even if it turns out to be our fault, because we can’t work on your code.

5. Annotate your code with comments that explain why you think that lcc is wrong. If lcc
dies with an assertion failure, please tell us where it died. If lcc crashes, please report the
last part of the call chain if you can. If lcc is rejecting a program that you think valid,
please tell us why you think it’s valid, and include supporting page numbers in the ANSI
Standard, Appendix A in The C Programming Language, 2nd edition by B. W. Kernighan
and D. M. Ritchie (Prentice Hall, 1988), or the appropriate section in C, A Reference
Manual, 3rd edition by S. B. Harbison and G. L. Steele, Jr. (Prentice Hall, 1991). If lcc
silently generates incorrect code for some construct, please include the corrupt assembly
code in the comments and flag the bad instructions if you can.

6. Confirm that your error hasn’t been fixed already. The latest version of lcc is always
available for anonymous ftp from ftp.cs.princeton.edu in pub/lcc. A README
file there gives acquistion details, and a LOG file reports what errors were fixed and when
they were fixed. If you report a error that’s been fixed, you might get a canned reply.

7. Send your program by electronic mail to lcc−bugs@cs.princeton.edu. Please send
only valid C programs; put all remarks in C comments so that we can process reports
semi−automatically.

6. Keeping in Touch

There is an lcc mailing list for general information about lcc. To be added to the list, send a
message with the 1−line body 

subscribe lcc

to majordomo@cs.princeton.edu. This line must appear in the message body; ‘Subject:’
lines are ignored. To learn more about mailing lists served by majordomo, send a message with
the 1−word body ‘help’ to majordomo@cs.princeton.edu. Mail sent to 
lcc@cs.princeton.edu is forwarded to everyone on the mailing list.

There is also an lcc−bugs mailing list for reporting bugs; subscribe to it by sending a message
with the 1−line body 

subscribe lcc−bugs

to majordomo@cs.princeton.edu. Mail addressed to lcc−bugs@cs.princeton.edu is
forwarded to everyone on this list.

Chris Fraser / cwf@research.att.com 
David Hanson / drh@cs.princeton.edu 
Thu Sep 8 10:14:42 EDT 1994 


